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Abstract  

We design a novel type of switching power supply which is an integration of flyback type 

and half-bridge resonant typology. Based on signal flow graph and division of functional modules 

of the circuit, we elaborate on the design principle, functions of different modules and working 

process of the switching power supply. By using three-terminal adjustable shunt regulator TL431, 

LD7535 and L6599, the voltage control of the power supply and voltage stabilizing are realized 

by regulating the pulse width and pulse frequency, respectively. The power factor is increased by 

adopting active power factor correction. Experiment shows that the switching power supply has 

good voltage stabilizing performance, with small ripple and high power factor as well as high 

voltage regulation and load regulation. 

Key words 

Switching power supply, fly back, half-bridge resonant typology, high precision 

 

1. Introduction 

Switching power supply is a DC voltage-stabilizing power supply which uses the switching 

regulator [1]. It regulates the output voltage by adjusting the switching frequency or duty cycle. 

Because of its small size, light weight and high frequency, the switching power supply is applied 

in nearly all electronic devices and plays an irreplaceable role in today’s electronic information 

industry [2]. In the meantime, the requirement on the switching power supply is also rising in 

other new fields. Addressing the defects of low precision and low power factor in ordinary 
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switching power supply, we design a novel type of switching power supply that is the 

combination of flyback type and half-bridge resonant typology. By designing closed-loop 

feedback control and employing active power factor correction, the precise control of the output 

voltage and the improvement of power factor are realized. 

Switching power supply consists of input circuit, power factor correction circuit, pulse 

control circuit, power conversion circuit, output circuit, and feedback circuit. In our design, the 

first module is the input circuit. The 220V AC current passes through the protection circuit, EMI 

suppression filter and bridge rectifier, and the unstabilized DC voltage is obtained. This voltage is 

subject to power factor correction in the second module, which maintains the same phase 

between the input current and the input voltage. The third module is the power conversion circuit, 

which uses the switching tube to convert DC voltage into a pulse waveform with certain 

frequency and to transmit the energy to the output terminal. The fourth module is the output 

circuit, where the square wave pulse voltage is rectified, filtered and converted into DC voltage. 

The fifth module is the feedback control circuit, where the output voltage passes through the 

voltage divider and the sampler and is compared against the reference voltage and amplified. The 

feedback circuit incorporates the precision shunt regulator TL431 and optical coupler PC817C. 

Upon receiving the output voltage feedback, the control chip will output the pulse width 

modulation (PWM) signals, thus achieving high-precision voltage stabilizing. 

 

2. Functional requirements and technical indicators 

The purpose of this paper is to design a novel type of switching power supply which is an 

integration of flyback type and half-bridge resonant typology. 

 

2.1 Efficiency and power factor of the power supply 

Within the given range of input voltage and temperature, the table below presents the target 

range of output efficiency and power factor of the power supply. To calculate the overall 

efficiency, the output power is first obtained based on the product of output current and output 

voltage under the rated input voltage and output full load. Then the ratio of the output power to 

the input active power on the power meter is calculated as the overall efficiency. The power 

factor is the ratio of the input active power to the output apparent power [3]. 
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2.2 Output voltage and current 

Within the given range of input voltage and temperature, the table below presents the target 

values of output current, voltage, ripple and noise. Ripple is a component synchronized with the 

input frequency and switching frequency between the output terminals. Ripple is usually 

expressed as the peak-to-peak value and should be below 0.5% of the output voltage. Noise is 

another high-frequency component besides the ripple and should be about 1% of the output 

voltage [4]. 

Tab. 1 Efficiency and power factor of power supply 

Input voltage Output load Efficiency PF value 

90VAC rating ≧84% ≧98% 

264VAC rating ≧88% ≧93% 

 

Tab. 2 Output voltage and current 

 V1 V2 V3 V4 

Output Voltage +12V +24V +5V +5Vsb 

Peak Current 2.5A 5A 3.5A 1A 

Rated Current 2A 4A 3A 0.5A 

      Voltage 

        Regulation 

Factor 

±5% ±5% ±5% ±5% 

Ripple 60mV 180mV 30mV 30mV 

Ripple and 

Noise 
120mV 240mV 50mV 50mV 

 

3. Detailed Process of Design 

In this section, we will present the detailed process of design. 

 

3.1 Input protection circuit 

Input protection circuit consists of tube fuse, negative temperature coefficient (NTC) 

thermistor and voltage dependent resistor. When the power supply has just started up, NTC 

thermistor has low temperature and high resistance, offering instantaneous restraint to the 

charging current [5]. As the heat dissipated by the current increases, the resistance of NTC 
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thermistor decreases rapidly. Thus NTC thermistor is started up and the power consumption is 

reduced.  

Voltage dependent resistor absorbs the voltage surges from the grid, which are generated 

due to disturbances from the electrical equipments in the grid or natural lightning. Voltage surges 

can take place within a very short time and reach very high values, causing the fuse and other 

components in the power supply to burn out. Therefore, it is necessary to apply the voltage 

dependent resistor across the two ends of the input voltage, so as to divide and absorb the voltage 

and to protect the circuit. 
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Fig.1. Input protection circuit 

 

3.2 EMI suppression filter 

EMI. suppression filter is usually designed with a common mode inductor and a filter 

capacitor. Common mode inductor is composed of two winding resistors with equal inductance in 

a closed magnetic circuit [6]. The phase difference is 180 degrees due to the magnetic flux 

generated by the frequency components of the power supply. Since the two resistors have equal 

number of windings, they counteract each other and the inductance of the frequency components 

of the power supply is zero. However, for the common mode noise, the effective permeability is 

very high, leading to large attenuation. 
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Fig.2. EMI suppression filter 
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3.3 Active power factor correction circuit 

Power factor is the ratio of active power to apparent power [7]. In the electronic devices 

containing AC/DC converter, the power supply for the DC/DC converter or DC/AC converter is 

usually the DC voltage obtained by rectifying AC mains power and large-capacitance filtering. 

The filter capacitor makes the output voltage smooth and the output current a spike pulse. If there 

is no filter circuit after the rectifier circuit but only the resistive load, the input current will be the 

sine wave having the same phase as the voltage of the power supply and a power factor of 1. The 

basic principle of the active power factor correction circuit is to isolate the rectifier from the filter 

capacitor, thus turning the capacitive load into resistive load in the rectifier circuit. 

Power factor correction falls into two categories, active and inactive [8]. Active power factor 

correction (APFC) circuit has an active power controller connected in series between the rectifier 

and the output capacitor. As a result, the input current and input voltage of AC/DC converter will 

be sine waves having the same frequency and the same phase. The input current is forced to go 

with the input voltage, thus realizing unity power factor. APFC can improve the power factor and 

overall efficiency of the switching power supply and prevent harmonic pollution of the grid. We 

use analog integrated circuit L6562 for APFC. 
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Fig.3. L6562 circuit 

As shown in Fig. 3, the output voltage HV of the APFC passes through the sampling resistor 

and then into the inverting input of the error amplifier through the pin INV. The reference voltage 

of 2.5V is input to the non-inverting terminal. After amplification, it is input into the multiplier 

M2. The AC voltage which has passed through the full-bridge rectifier is then sampled by the 

voltage divider of the sampling resistor. It is input into multiplier M1 through the MULT pin. The 

output voltage of the multiplier is proportional to the product of M1 and M2. The series 

connected source resistor of power MOSFET is responsible for the sampling of the peak current 

of drain voltage-increasing inductor L. It is input into the error amplifier via CS pin and 

compared with the output voltage of the multiplier.  When the voltage of the CS pin reaches the 

threshold value, that is, when the current reaches the peak in L, the PWM comparator will stop 

driving the gate of MOSFET. 
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3.4 Flyback typology 

Flyback circuit refers to the following condition. When the switching tube is conducted, 

driving the primary side of the pulse transformer, the secondary side of the transformer does not 

supply power to the load [9]. This is the alternating conduction and disconnection of the primary 

and secondary side. But due to leakage inductance of the transformer, the primary side will have 

voltage spikes, causing the breakdown of the switching device. Therefore, it is necessary to 

install the RCD clamp circuit. Single-terminal flyback driver circuit can satisfy the requirement 

as a small-power high-frequency switching power supply. Furthermore, since the transformer in 

the flyback typology switching power supply plays the dual roles of inductor and transformer, 

only the filter capacitor needs to be selected, but not the filter inductor. The circuit structure is 

simple. The typical isolated flyback driver circuit is shown in Fig. 4. 

Trans
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GND

VOUT

LD7535

 

Fig.4. Isolated flyback driver circuit 

LD7535, the pulse-width modulator, outputs the PWM signal to control the conduction and 

disconnection of MOSFET. The working frequency is 50-130KHz and it is adjusted by grounding 

a resistor through pin 3. The working frequency is 100K, and the corresponding switching 

frequency is 65KHZ. When MOSFET is conducted, it stores energy in the primary coils of the 

transformer. The diode connected to the secondary side of the transformer is in reverse biased 

state and so the diode is disconnected. No current flows through the secondary circuit of the 

transformer, and therefore no energy is supplied to the load. When MOSFET is disconnected, the 

voltage polarity in the secondary coils of the transformer is reversed, thus conducting the diode 

and charging the output capacitor. In the meantime, the current flows through the load. 

 

3.5 Half-bridge resonant typology 

Resonant power supply represents the new trend of switching power supply. The sine wave 

is generated by the resonant circuit, and the switching tube is turned on and off during zero 
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crossing of the sine wave. Therefore, the MOS tube of the half-bridge circuit is alternately 

conducted and disconnected. By regulating the switching frequency, the average output voltage 

on the secondary side of the transformer can be changed. The half-bridge resonant typology 

combined with APFC can achieve a power factor above 0.95, thus greatly inhibiting harmonic 

pollution of the grid [10].  
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Fig.5. L6599 circuit 

L6599 is a double-ended controller specific for half-bridge resonant typology, outputting 

signals with phase difference of 180° and 50% duty cycle. Unlike PWM controller, energy is 

transmitted by adjusting the duty cycle. For the half-bridge resonant typology, the duty cycle is 

fixed, so the energy transmission is controlled by the switching frequency. The output voltage is 

controlled by the working frequency. As shown in Fig. 5, a resistor RF min is grounded via pin 4 

for configuring the lowest oscillation frequency. Resistor RF max is grounded via pin 4. Photo-

coupled grounding is controlled by the feedback circuit and the oscillation frequency of the 

controller is adjusted along with the output voltage. RF max is for configuring the highest 

working frequency. 
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3.6 Output rectifier and filter circuit 

The output voltage of the switching power supply needs to be rectified and filtered. Schottky 

rectifier diode depends on the working of most charge carriers and can be conducted and 

disconnected easily. It has a small positive voltage drop, which decreases with higher 

temperature. Therefore, the loss arising from conduction is reduced. The following principles 

should be adhered to when choosing the parameters of the output rectifier tube. The rated current 

should be at least three times that of the maximum output current of the circuit. The working peak 

reverse voltage should be higher than the minimum permissible voltage.  

Output filter converts the AC square waves into DC current. As shown in Fig. 6, the rectified 

waveform is directly input into the filter and smoothed into DC waveform by high-capacitance 

filtering. L51 and C55 make up the post-filter that smooths the waveform and reduces ripple. 
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Fig.6. Output rectifier and filter circuit 

 

3.7 Feedback voltage stabilizing circuit 

Closed-loop feedback is used to stabilize the output voltage. Optical coupler is used for 

input sampling, signal feedback and driving output. The feedback circuit is designed as shown in 

Fig. 7. TL413 is a precision voltage stabilizer that stabilizes the voltage at pin 2 of the optical 

coupler PC817C at 2.5V. When the output voltage of 24V increases, the voltage of pin 2 remains 

constant, while the voltage of pin 1 increases. As a consequence, the light emitting device is 

conducted and gives off light. The light receiver is also conducted and the voltage of pin 4 

decreases. On the contrary, when the output voltage of 24V decreases, the light receiver is 

disconnected and the voltage of pin 4 increases. The voltage level of pin 4 of PC817C is feedback 

to the control chip. By regulating the duty cycle, the voltage is stabilized.  

R54 and R56 are the output sampling resistors. They divide the output voltage by controlling 

the shunt from the cathode to the anode via the REF terminal of TL431. This current directly 
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drives the light emission of the optical coupler. When the output voltage increases, Vref increases 

as well, leading to increased current flowing through TL431. As a result, the light emitted by the 

optical coupler becomes stronger and the feedback voltage at the light sensing terminal increases 

as well. The PWM control chip, upon receiving this feedback voltage, will change the switching 

time of MOSFET and the output voltage will drop. 
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Fig.7. Feedback circuit 

 

4. The Main Hardware Circuit 

The circuit diagram consists of three parts, namely, input circuit and APFC module, 

flyback typology, half-bridge resonant typology and PCB design. For each part, the circuit 

diagrams are shown in Fig. 8, Fig. 9, Fig. 10, and Fig. 11, respectively. 
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Fig.8. Input circuit and APFC module 
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Fig.9. Flyback typology 
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Fig.10. Half-bridge resonant typology 

 

Fig.11. PCB design 
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5. Experiment and discussion 

The performance test of switching power supply is important for performance evaluation. 

The test items include overall efficiency, power factor, cross loading, ripple and noise, output 

voltage overshoot and temperature rise. Here the equipment tested is composed of 3KW AC auto 

transformer, CHROMA 650 electronic load, TDS3032B oscilloscope and P6021 current probe. 

 

5.1 Overall efficiency and power factor 

Overall efficiency and power factor are tested to see if they satisfy the requirement. Under 

AC220V/50HZ, the overall efficiency should be no less than 85% and the power factor no less 

than 0.92 when the overall power of the power supply is smaller than 1500W. 

Tab. 3 Test result of overall efficiency and power factor of the power supply 

 Full Load（%） 80% Load（%） Half Load（%） 

 PF  Efficiency PF Efficiency PF Efficiency 

90V 99.7  86.01 99.7  86.90 99.6  86.87 

120V 99.5  88.24 99.6  88.45 99.3  88.10 

160V 99.5  89.22 99.2  89.40 98.3  88.68 

220V 98.3  89.98 97.7  89.99 96.8  89.03 

264V 96.7  90.16 95.2  90.21 94.3  89.03 

 

As shown in Tab. 3, the minimum efficiency is 86.01% and the maximum is 90.21% under 

different loads; the minimum power factor is 94.3% and the maximum power factor is 99.7%. 

The performance is excellent and satisfies the requirement. 

 

5.2 Cross loading test 

Cross loading test is to evaluate the voltage regulation capacity under unbalanced load. It is 

checked whether the output voltage varies with the load and whether the variation range of the 

output voltage exceeds the specified value. 

As shown in Tab. 4, when output voltage is 5V and 12V (heavy load) and the output voltage 

is 24V (light load), the actual output voltage is 24.64V under the load of 24V. Thus, under 

unbalanced load with multi-route output, the output voltage fluctuates greatly. We use the TL431 

precision shunt regulator for feedback regulation and achieve satisfactory effect. 
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5.3 Ripple and Noise 

Ripple and noise are tested as well. The high-frequency and low-frequency ripple and noise 

are displayed on the oscilloscope. For this test, a 47uF capacity together with a 0.1uF capacitor is 

connected to the voltage probe of the oscilloscope. The test is performed at broadband 20MHz 

AC mode. Under input voltage of 240V and full load condition, the ripple and noise of the three 

output routes are shown as follow. 

Tab. 4 Result of cross loading test 

5V 12V 24V 5V 12V 24V 

0.1A 0.3A 0.2A 5.16V 11.97V 24.22V 

0.1A 0.3A 4.0A 5.16V 12.04V 23.91V 

0.1A 2.0A 0.2A 5.15V 11.88V 24.63V 

3.0A 0.3A 0.2A 5.12V 11.97V 24.24V 

0.1A 2.0A 4.0A 5.15V 11.95V 24.30V 

3.0A 0.3A 4.0A 5.12V 12.04V 23.93V 

3.0A 2.0A 0.2A 5.11V 11.88V 24.64V 

3.0A 2.0A 4.0A 5.11V 11.95V 24.32V 

 

Tab. 5 Test result of ripple and noise 

 Load Ripple Ripple and Noise 

5V 3A 09.6mv 15.6mv 

12V 2A 37.8mv 52.8mv 

24V 4A 117.0mv 181.0mv 

 

      

                Fig. 12  5 V ripple                    Fig. 13  12V ripple                 Fig. 14  24V ripple 

Ripple is a component synchronized with the input frequency and switching frequency 

between the output terminals. Expressed as the peak-to-peak value, ripple is usually below 0.5% 
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of the output voltage. Noise is a high-frequency component between the output terminals and its 

value is about 1% of the output voltage. Ripple noise is the synthesis of the two and generally 

below 2% of the output voltage. As shown in Tab. 5, the ripple and noise in all three output 

routes satisfy the requirement. 

 

5.4 Output voltage overshoot and time-to-climb 

Output voltage overshoot and time-to-climb are the peak values causing the changes of DC 

voltage when the power supply is turned on or off. When the power supply is turned on, the 

voltage overshoot and time-to-climb are recorded with the oscilloscope. Under the input voltage 

of 220V and full load conditions, the output voltage overshoot and time-to-climb are measured as 

follows. 

Tab. 6 Output voltage overshoot and time-to-climb 

       Output Voltage Load Current Overshoot Rise Time 

+5V MAX 0.000% 01.6ms 

+12V MAX 3.840% 06.8ms 

+24V MAX 2.789% 05.6ms 

 

   

 Fig. 15 5V overshoot             Fig. 16  12V overshoot            Fig. 17  24V overshoot 

According to relevant standards, the overshoot of the power supply should not exceed ±10% 

of the output voltage. In Tab. 6, the maximum overshoot is 3.84%, which satisfies the 

requirement. 

 

Conclusion 

Switching power supply is now considered a substitute for linear power supply due to its 

various advantages. We design a novel type of switching power supply with three outputs (5V, 

12V, 24V) by combining flyback circuit and half-bridge resonant typology and using TL431 
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circuit and PC817 optical coupler. The experiment shows that this switching power supply has 

good voltage stabilizing performance, with small ripple, high power factor, high voltage 

regulation and high load regulation. Compared with ordinary switching power supply, the 

proposed power supply has higher precision of output voltage, higher power factor, smaller 

ripple, lower load regulation and voltage regulation. Moreover, the power is larger and the load-

carrying capacity is improved. 
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